4.5 Article

Three-dimensional chaotic autonomous system with only one stable equilibrium: Analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form

Journal

EUROPEAN PHYSICAL JOURNAL PLUS
Volume 129, Issue 5, Pages -

Publisher

SPRINGER HEIDELBERG
DOI: 10.1140/epjp/i2014-14076-4

Keywords

-

Ask authors/readers for more resources

This paper proposes a three-dimensional chaotic autonomous system with only one stable equilibrium. This system belongs to a newly introduced category of chaotic systems with hidden attractors. The nonlinear dynamics of the proposed chaotic system is described through numerical simulations which include phase portraits, bifurcation diagrams and new cost function for parameter estimation of chaotic flows. The coexistence of a stable equilibrium point with a strange attractor is found in the proposed system for specific parameters values. The physical existence of the chaotic behavior found in the proposed system is verified by using the Orcard-PSpice software. A good qualitative agreement is shown between the simulations and the experimental results. Based on the Routh-Hurwitz conditions and for a specific choice of linear controllers, it is shown that the proposed chaotic system is controlled to its equilibrium point. Chaos synchronization of an identical proposed system is achieved by using the unidirectional linear and nonlinear error feedback coupling. Finally, the fractional-order form of the proposed system is studied by using the stability theory of fractional-order systems and numerical simulations. A necessary condition for the commensurate fractional order of this system to remain chaotic is obtained. It is found that chaos exists in this system with order less than three.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available