4.3 Article

The flow of alleles of important photoperiod and vernalisation genes through Australian wheat

Journal

CROP & PASTURE SCIENCE
Volume 60, Issue 7, Pages 646-657

Publisher

CSIRO PUBLISHING
DOI: 10.1071/CP09014

Keywords

breeding; pedigree; relationships; adaptation; historical wheat; facultative wheat

Ask authors/readers for more resources

The photoperiod sensitivity gene Ppd-D1 and the vernalisation genes Vrn-A1, Vrn-B1, and Vrn-D1 are known to contribute to optimal adaptation to specific environments. Diagnostic molecular markers for detecting important alleles of these genes are now available, including for 2 distinct spring alleles of Vrn-A1 (a and b). As a first step for determining the relative importance of these alleles, they were characterised in Australian cultivars released from the late 19th until the early 21st Century. The photoperiod-insensitive Ppd-D1a allele did not occur in the Australian cultivars we assessed until after the release of cultivars containing CIMMYT germplasm in 1973. Thereafter, this allele became common; however, cultivars with an alternative, presumably photoperiod-sensitive, allele have continued to be released for all parts of the Australian wheatbelt, including for latitudes less than 28 degrees S. In contrast to other parts of the world, Vrn-A1b was frequent in cultivars released during the first 70 years of the 20th Century and is still present in modern cultivars. Before the use of CIMMYT germplasm, the spring allele of Vrn-B1 and the winter allele of Vrn-D1 were common. Four major combinations of alleles of these major genes were identified in modern cultivars: first, those similar to WW15 (Anza), with the Ppd-D1a allele, the spring Vrn-A1a allele, and winter alleles at Vrn-B1 and Vrn-D1; second, those similar to Spear or Kite, with the alternative, photoperiod-sensitive allele at Ppd-D1, the spring Vrn-A1a allele, the spring Vrn-B1a allele, and the winter allele at Vrn-D1; third, those similar to Pavon F 76, with the Ppd-D1a allele, the winter allele at Vrn-A1, and the spring alleles at Vrn-B1 and Vrn-D1; fourthly, those similar to Gabo, with the winter allele at Vrn-A1, the spring allele at Vrn-B1, the winter allele at Vrn-D1, but the Ppd-D1a allele. Other combinations were found, including those for winter cultivars and those for early heading cultivars. A hypothesis was suggested for the facultative cv. Oxley. Evidence was presented to suggest that modern full-season cultivars head similar to 1 week earlier in a Mallee environment than cultivars from the late 19th Century.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available