4.8 Article

Multi-photon quantum cutting in Gd2O2S:Tm3+ to enhance the photo-response of solar cells

Journal

LIGHT-SCIENCE & APPLICATIONS
Volume 4, Issue -, Pages -

Publisher

CHINESE ACAD SCIENCES, CHANGCHUN INST OPTICS FINE MECHANICS AND PHYSICS
DOI: 10.1038/lsa.2015.117

Keywords

downconversion; infrared emission; quantum cutting; solar cells; spectral conversions

Categories

Funding

  1. National Science Foundation of China [51125005, 51472088]
  2. China Scholarship Council (CSC) [201206150022]
  3. Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)

Ask authors/readers for more resources

Conventional photoluminescence (PL) yields at most one emitted photon for each absorption event. Downconversion (or quantum cutting) materials can yield more than one photon by virtue of energy transfer processes between luminescent centers. In this work, we introduce Gd2O2S:Tm3+ as a multi-photon quantum cutter. It can convert near-infrared, visible, or ultraviolet photons into two, three, or four infrared photons of similar to 1800 nm, respectively. The cross-relaxation steps between Tm3+ ions that lead to quantum cutting are identified from (time-resolved) PL as a function of the Tm3+ concentration in the crystal. A model is presented that reproduces the way in which the Tm3+ concentration affects both the relative intensities of the various emission lines and the excited state dynamics and providing insight in the quantum cutting efficiency. Finally, we discuss the potential application of Gd2O2S: Tm3+ for spectral conversion to improve the efficiency of next-generation photovoltaics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available