4.4 Article Proceedings Paper

Conformational dependence of the electronic coupling for hole transfer between adenine and tryptophan

Journal

COMPUTATIONAL AND THEORETICAL CHEMISTRY
Volume 975, Issue 1-3, Pages 38-41

Publisher

ELSEVIER
DOI: 10.1016/j.comptc.2011.04.025

Keywords

Electron transfer; Electronic couplings; DNA-protein complexes; DFT

Funding

  1. ICREA Funding Source: Custom

Ask authors/readers for more resources

Oxidation of DNA may lead to mutagenic lesions generated far away from the initial oxidized site because of migration of radical cation states through the pi stack. In DNA-protein complexes, transfer of the excess positive charge from nucleobases to aromatic amino acid residues protects DNA from possible mutations. In the present paper, we explore how the probability of the hole transfer (HT) process between adenine (A) and tryptophan (Trp) depends on the mutual position of these sites. To accomplish this, we carry out DFT calculations of HT electronic coupling in different conformations of the A-Trp complex. Stacked and T-shaped structures are considered. The HT rate in the system is shown to be very sensitive to the mutual position of the nucleobase and amino acid residue. Interestingly, the strongest coupling is obtained in stacked structures where only one of two rings in each molecule are involved in the pi-pi interaction and a surprisingly weak coupling is found in the eclipsed conformation of the A-Trp complex with the perfect overlap of the aromatic systems. Although the HT rate derived for T-shaped conformations is in most cases slower than in pi stacks, several T-shaped conformations are found where the HT process should be quite efficient. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available