4.6 Article

Synthesis, acid properties and catalysis by niobium oxide nanostructured materials

Journal

CATALYSIS SCIENCE & TECHNOLOGY
Volume 4, Issue 9, Pages 3044-3052

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4cy00238e

Keywords

-

Funding

  1. University of Ottawa International Office
  2. Generalitat Valenciana [BEST/2012/233]
  3. Government of Canada
  4. NSERC
  5. DFAIT fellowship from ELAP (Emerging Leaders in the Americas Program)

Ask authors/readers for more resources

Several forms of niobium oxide were prepared, including nanostructured mesoporous materials, and their acidity properties were comprehensively investigated and compared with commercially available materials. The composites were characterized by a variety of techniques, including XRD, TEM, N-2 adsorption and Hammett acid indicator studies. The acidity of the niobium oxide derivatives was also investigated by the ability of the materials to successfully promote the halochromic ring-opening of an oxazine-coumarin probe that was specifically designed for use in fluorescence imaging studies. The ring-opening reaction was easily monitored using UV-visible, fluorescence and NMR spectroscopy. Single molecule microscopy was employed to gain a more in-depth understanding of the niobium oxide acid catalysis pathway. Using this technique, the rate of niobium oxide mediated protonation was estimated to be 1.8 x 10(-13) mol m(-2) s(-1). Single molecule analysis was also used to obtain a detailed map of Bronsted acid sites on the niobium oxide surface. The active sites, located by multiple blinking events, do not seem to be localized on any area of the material, but rather randomly distributed throughout the solid state surface. As the reaction proceeds, the sites with the highest acidity and accessibility are gradually consumed, making the next tier of acid sites available for reaction. The phenomenon was more closely characterized by using time lapsed reactivity maps.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available