4.6 Article

Simple hydrothermal synthesis of mesoporous spinel NiCo2O4 nanoparticles and their catalytic behavior in CH3OH electro-oxidation and H2O2 electro-reduction

Journal

CATALYSIS SCIENCE & TECHNOLOGY
Volume 3, Issue 12, Pages 3207-3215

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cy00590a

Keywords

-

Funding

  1. Scientific Research Foundation for the Returned Overseas Chinese Scholars and State Education Ministry (SRF for ROCS and SEM)
  2. Hundred Talents Program of Chinese Academy of Sciences

Ask authors/readers for more resources

Mesoporous spinel NiCo2O4 nanoparticles were synthesized via a simple hydrothermal strategy. Their physicochemical properties were characterized by X-ray diffraction (XRD), scanning electron microscopy-energy dispersive X-ray spectra (SEM-EDS), X-ray photoelectron spectra (XPS) and nitrogen sorption measurements. Their electrocatalytic performances were investigated by cyclic voltammetry (CV), chronoamperomerty (CA) and electrochemical impedance spectroscopy (EIS) tests. The obtained NiCo2O4 materials exhibit a particle size of about 200 nm, a specific surface area (SSA) of 88.94 m(2) g(-1) and a mesopore volume of 0.195 cm(3) g(-1). The binary electroactive sites of Co and Ni species, high electron conductivity and intriguing mesoporous structures of the NiCo2O4 electrode favor its desirable electro-catalytic activity. A current density of 93 mA cm(-2) at 0.6 V in 1 M KOH and 0.5 M CH3OH electrolytes was obtained for CH3OH electro-oxidation, and a current density of 130 mA cm(-2) at -0.3 V in 3 M NaOH and 0.5 M H2O2 electrolytes was achieved for H2O2 electro-reduction. Moreover, the NiCo2O4 electrode exhibits a high stability for both catalytic reactions, showing the potential for further development of high performance non-Pt catalysts based alkaline fuel cells (AFCs).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available