4.6 Article

Enzyme structure and catalytic properties affected by the surface functional groups of mesoporous silica

Journal

CATALYSIS SCIENCE & TECHNOLOGY
Volume 2, Issue 2, Pages 310-315

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1cy00258a

Keywords

-

Ask authors/readers for more resources

The enzyme subtilisin from Bacillus licheniformis (4.1 nm x 7.8 nm x 3.7 nm) was easily immobilized onto a mesoporous silica (MPS) surface by a direct one-step method and the amount of subtilisin immobilized on each functionalized MPS surface was similar (approximately 0.30 mg of enzyme/ mg of MPS support). The catalytic performance (hydrolytic activity and enantioselectivity) of the immobilized subtilisin was found to depend on the properties of the organofunctional group on the MPS surface. In particular, the hydrolytic activity of enzyme immobilized on ethyl-group-modified MPS increased relative to the behavior of free subtilisin (relative activity 143%). The activity of subtilisin immobilized on the modified MPS was improved by facilitation of contact between enzyme and hydrophobic substrate by increase in hydrophobicity with an immobilized carrier. On the other hand, the enantioselectivity of subtilisin immobilized on 3-mercaptopropyl-group-modified MPS significantly decreased (enantioselectivity of 2.6 compared to 4.3 for free subtilisin). This decrease in enantioselectivity indicated that the mercapto group on the MPS surface was changed in the secondary structure of enzyme by interacting between enzyme and immobilized support. The denaturation temperature of subtilisin immobilized on no-substituted MPS increased (65 degrees C compared with 57 degrees C for free subtilisin). The denaturation temperature of immobilized subtilisin was dependent on the absorbed fraction of thermal energy by functional groups on the MPS surface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available