3.9 Article

Crystal structure of the signaling helix coiled-coil domain of the β1 subunit of the soluble guanylyl cyclase

Journal

BMC STRUCTURAL BIOLOGY
Volume 10, Issue -, Pages -

Publisher

BIOMED CENTRAL LTD
DOI: 10.1186/1472-6807-10-2

Keywords

-

Categories

Funding

  1. NIH [R01 HL075329, R01 GM067640, SDG 0335159N]
  2. Division of Computing and Communication Foundations
  3. Direct For Computer & Info Scie & Enginr [1066471] Funding Source: National Science Foundation

Ask authors/readers for more resources

Background: The soluble guanylyl cyclase (sGC) is a heterodimeric enzyme that, upon activation by nitric oxide, stimulates the production of the second messenger cGMP. Each sGC subunit harbor four domains three of which are used for heterodimerization: H-NOXA/H-NOBA domain, coiled-coil domain (CC), and catalytic guanylyl cyclase domain. The CC domain has previously been postulated to be part of a larger CC family termed the signaling helix (S-helix) family. Homodimers of sGC have also been observed but are not functionally active yet are likely transient awaiting their intended heterodimeric partner. Results: To investigate the structure of the CC S-helix region, we crystallized and determined the structure of the CC domain of the sGC beta 1 subunit comprising residues 348-409. The crystal structure was refined to 2.15 angstrom resolution. Conclusions: The CC structure of sGC beta 1 revealed a tetrameric arrangement comprised of a dimer of CC dimers. Each monomer is comprised of a long a-helix, a turn near residue P399, and a short second a-helix. The CC structure also offers insights as to how sGC homodimers are not as stable as (functionally) active heterodimers via a possible role for inter-helix salt-bridge formation. The structure also yielded insights into the residues involved in dimerization. In addition, the CC region is also known to harbor a number of congenital and man-made mutations in both membrane and soluble guanylyl cyclases and those function-affecting mutations have been mapped onto the CC structure. This mutant analysis indicated an importance for not only certain dimerization residue positions, but also an important role for other faces of the CC dimer which might perhaps interact with adjacent domains. Our results also extend beyond guanylyl cyclases as the CC structure is, to our knowledge, the first S-helix structure and serves as a model for all S-helix containing family members.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available