4.4 Article

Maternal Midpregnancy Glucose Levels and Risk of Congenital Heart Disease in Offspring

Journal

JAMA PEDIATRICS
Volume 169, Issue 12, Pages 1112-1116

Publisher

AMER MEDICAL ASSOC
DOI: 10.1001/jamapediatrics.2015.2831

Keywords

-

Categories

Funding

  1. Stanford Cardiovascular Institute
  2. National Institutes of Health [HL085859, P60-DK20579]
  3. American Heart Association [10FTF3360005]
  4. Pediatric Scientist Development Program of the National Institutes of Health [K12-HD000850]

Ask authors/readers for more resources

IMPORTANCE There is a well-described association between maternal diabetes mellitus and risk of congenital heart disease (CHD) in offspring. Although the clinical diagnoses of type 2 diabetes or gestational diabetes are strong risk factors for CHD, subclinical abnormalities of glucose and insulin metabolism are common within the general population and could also confer risk for CHD. We hypothesize that continuous measures of blood analytes related to maternal diabetes are related to odds of cardiac malformations. OBJECTIVE To explore the potential association of 2 different CHD phenotypes in offspring with maternal midpregnancy measures of glucose and insulin. DESIGN, SETTING, AND PARTICIPANTS Case-control study from a population-based cohort of 277 pregnant women in southern and central California carrying infants with tetralogy of Fallot (TOF) (n = 55), dextrotransposition of the great arteries (dTGA) (n = 42), or healthy infants without CHD (n = 180). Serum samples were collected from 2003 through 2007. The analysis was conducted from March through June 2015. MAIN OUTCOMES AND MEASURES Blood analytes related to maternal glucose metabolism were measured from random nonfasting second-trimester blood samples. We measured serum insulin levels by a validated radioimmunoassay, and we measured glucose levels. Multivariable logistic regression models estimated the association between these levels and case status. RESULTS Serum glucose values were elevated in the maternal samples for offspring with TOF (median, 97.0 mg/dL [to convert to millimoles per liter, multiply by 0.0555]) relative to controls (median, 91.5 mg/dL) (P = .01, Wilcoxon rank sum test), a phenomenon not observed in the maternal samples for offspring with dTGA (median, 90.0 mg/dL) relative to controls (P = .18, Wilcoxon rank sum test). Serum insulin levels were significantly different between controls (median, 18.8 mu IU/mL [to convert to picomoles per liter, multiply by 6.945]) and maternal samples for offspring with dTGA (median, 13.1 mu IU/mL; P = .048, Wilcoxon rank sum test) but not with TOF (median, 14.3 mu IU/mL; P = .35, Wilcoxon rank sum test). Relative to maternal blood glucose levels of infants without cardiac malformations, we observed that maternal blood glucose levels in models including insulin were strongly associated with odds of TOF (adjusted odds ratio = 7.54; 95% CI, 2.30-24.69) but not with dTGA (adjusted odds ratio = 1.16; 95% CI, 0.28-4.79). CONCLUSIONS AND RELEVANCE These results represent a direct correlation of glucose as a continuous variable to odds of specific cardiac malformations. The association between serum glucose and odds of TOF indicates the need for additional epidemiological and mechanistic investigations into the risk conferred by insulin signaling and glucose metabolism during early pregnancy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available