4.6 Article

Engineering optically triggered droplets for photoacoustic imaging and therapy

Journal

BIOMEDICAL OPTICS EXPRESS
Volume 5, Issue 12, Pages 4417-4427

Publisher

OPTICAL SOC AMER
DOI: 10.1364/BOE.5.004417

Keywords

-

Ask authors/readers for more resources

Liquid perfluorocarbon (PFC) droplets incorporating optical absorbers can be vaporized through photothermal heating using a pulsed laser source. Here, we report on the effect of droplet core material on the optical fluence required to produce droplet vaporization. We fabricate gold nanoparticle templated microbubbles filled with various PFC gases (C3F8, C4F10, and C5F12) and apply pressure to condense them into droplets. The core material is found to have a strong effect on the threshold optical fluence, with lower boiling point droplets allowing for vaporization at lower laser fluence. The impact of droplet size on vaporization threshold is discussed, as well as a proposed mechanism for the relatively broad distribution of vaporization thresholds observed within a droplet population with the same core material. We propose that the control of optical vaporization threshold enabled by engineering the droplet core may find application in contrast enhanced photoacoustic imaging and therapy. (C) 2014 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available