4.6 Article

Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/Fourier domain OCT

Journal

BIOMEDICAL OPTICS EXPRESS
Volume 3, Issue 5, Pages 1047-1061

Publisher

Optica Publishing Group
DOI: 10.1364/BOE.3.001047

Keywords

-

Funding

  1. National Institutes of Health (NIH) [R01-EY011289-26, R01-EY013516-09, R01-EY019029-04, R01-EY013178-12, R01-HL095717-03, R01-CA075289-14]
  2. Air Force Office of Scientific Research (AFOSR) [FA9550-10-1-0551, FA9550-10-1-0063]
  3. Samsung Scholarship

Ask authors/readers for more resources

We present an approach to measure pulsatile total retinal arterial blood flow in humans and rats using ultrahigh speed Doppler OCT. The axial blood velocity is measured in an en face plane by raster scanning and the flow is calculated by integrating over the vessel area, without the need to measure the Doppler angle. By measuring flow at the central retinal artery, the scan area can be very small. Combined with ultrahigh speed, this approach enables high volume acquisition rates necessary for pulsatile total flow measurement without modification in the OCT system optics. A spectral domain OCT system at 840nm with an axial scan rate of 244kHz was used for this study. At 244kHz the nominal axial velocity range that could be measured without phase wrapping was +/- 37.7mm/s. By repeatedly scanning a small area centered at the central retinal artery with high volume acquisition rates, pulsatile flow characteristics, such as systolic, diastolic, and mean total flow values, were measured. Real-time Doppler C-scan preview is proposed as a guidance tool to enable quick and easy alignment necessary for large scale studies. Data processing for flow calculation can be entirely automatic using this approach because of the simple and robust algorithm. Due to the rapid volume acquisition rate and the fact that the measurement is independent of Doppler angle, this approach is inherently less sensitive to involuntary eye motion. This method should be useful for investigation of small animal models of ocular diseases as well as total blood flow measurements in human patients in the clinic. (c) 2012 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available