4.4 Article

Fullerenes as adhesive layers for mechanical peeling of metallic, molecular and polymer thin films

Journal

BEILSTEIN JOURNAL OF NANOTECHNOLOGY
Volume 5, Issue -, Pages 394-401

Publisher

BEILSTEIN-INSTITUT
DOI: 10.3762/bjnano.5.46

Keywords

polymerisation; porphyrin; surface; thin film; transfer

Funding

  1. Royal Society Wolfson Merit Award
  2. UK Engineering and Physical Sciences Research Council [EP/H010432/1]

Ask authors/readers for more resources

We show that thin films of C-60 with a thickness ranging from 10 to 100 nm can promote adhesion between a Au thin film deposited on mica and a solution-deposited layer of the elastomer polymethyldisolaxane (PDMS). This molecular adhesion facilitates the removal of the gold film from the mica support by peeling and provides a new approach to template stripping which avoids the use of conventional adhesive layers. The fullerene adhesion layers may also be used to remove organic monolayers and thin films as well as two-dimensional polymers which are pre-formed on the gold surface and have monolayer thickness. Following the removal from the mica support the monolayers may be isolated and transferred to a dielectric surface by etching of the gold thin film, mechanical transfer and removal of the fullerene layer by annealing/dissolution. The use of this molecular adhesive layer provides a new route to transfer polymeric films from metal substrates to other surfaces as we demonstrate for an assembly of covalently-coupled porphyrins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available