4.4 Article

Schottky junction/ohmic contact behavior of a nanoporous TiO2 thin film photoanode in contact with redox electrolyte solutions

Journal

BEILSTEIN JOURNAL OF NANOTECHNOLOGY
Volume 2, Issue -, Pages 127-134

Publisher

BEILSTEIN-INSTITUT
DOI: 10.3762/bjnano.2.15

Keywords

cyclic voltammogram of titanium dioxide photoanode; flat band potential; nanoporous TiO2 thin film; photocurrent; Schottky junction and ohmic contact

Ask authors/readers for more resources

The nature and photoelectrochemical reactivity of nanoporous semiconductor electrodes have attracted a great deal of attention. Nanostructured materials have promising capabilities applicable for the construction of various photonic and electronic devices. In this paper, a mesoporous TiO2 thin film photoanode was soaked in an aqueous methanol solution using an O-2-reducing Pt-based cathode in contact with atmospheric air on the back side. It was shown from distinct photocurrents in the cyclic voltammogram (CV) that the nanosurface of the mesoporous n-TiO2 film forms a Schottky junction with water containing a strong electron donor such as methanol. Formation of a Schottky junction (liquid junction) was also proved by Mott-Schottky plots at the mesoporous TiO2 thin film photoanode, and the thickness of the space charge layer was estimated to be very thin, i.e., only 3.1 nm at -0.1 V vs Ag/AgCl. On the other hand, the presence of [Fe(CN)(6)](4-) and the absence of methanol brought about ohmic contact behavior on the TiO2 film and exhibited reversible redox waves in the dark due to the [Fe(CN)(6)](4-/3-) couple. Further studies showed that multiple Schottky junctions/ohmic contact behavior inducing simultaneously both photocurrent and overlapped reversible redox waves was found in the CV of a nanoporous TiO2 photoanode soaked in an aqueous redox electrolyte solution containing methanol and [Fe(CN)(6)](4-). That is, the TiO2 nanosurface responds to [Fe(CN)(6)](4-) to give ohmic redox waves overlapped simultaneously with photocurrents due to the Schottky junction. Additionally, a second step photocurrent generation was observed in the presence of both MeOH and [Fe(CN)(6)](4-) around the redox potential of the iron complex. It was suggested that the iron complex forms a second Schottky junction for which the flat band potential (E-fb) lies near the redox potential of the iron complex.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available