4.1 Article

The isolated-pentagon rule and nice substructures in fullerenes

Journal

ARS MATHEMATICA CONTEMPORANEA
Volume 15, Issue 2, Pages 487-497

Publisher

UP FAMNIT
DOI: 10.26493/1855-3974.1359.b33

Keywords

Fullerene; patch; stability; isolated pentagon rule; Kekule structure; conjugated cycle; cyclic edge-cut

Funding

  1. NSFC [11371180, 11871256]

Ask authors/readers for more resources

After fullerenes were discovered, Kroto in 1987 proposed first the isolated-pentagon rule (IPR): the most stable fullerenes are those in which no two pentagons share an edge, that is, each pentagon is completely surrounded by hexagons. To now the structures of the synthesized and isolated (neutral) fullerenes meet this rule. The IPR can be justified from local strain in geometry and pi-electronic resonance energy of fullerenes. If two pentagons abut in a fullerene, a 8-circuit along the perimeter of the pentalene (a pair of abutting pentagons) occurs. This paper confirms that such a 8-circuit is always a conjugated cycle of the fullerene in a graph-theoretical approach. Since conjugated circuits of length 8 destabilize the molecule in conjugated circuit theory, this result gives a basis for the IPR in pi-electronic resonance. We also prove that each 6-circuit (hexagon) and each 10-circuit along the perimeter of a pair of abutting hexagons are conjugated. Two such types of conjugated circuit satisfy the (4n + 2)-rule, and thus stabilise the molecule.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available