4.4 Article Proceedings Paper

Three-dimensional aeolian dynamics within a bowl blowout during offshore winds: Greenwich Dunes, Prince Edward Island, Canada

Journal

AEOLIAN RESEARCH
Volume 3, Issue 4, Pages 389-399

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.aeolia.2011.09.002

Keywords

Bowl blowout; Aerodynamics; Wind flow; Sediment transport; Foredune; Prince Edward Island

Ask authors/readers for more resources

This paper examines the aeolian dynamics of a deep bowl blowout within the foredune of the Greenwich Dunes, on the northeastern shore or Prince Edward Island, Canada. Masts of cup anemometers and sonic anemometers were utilized to measure flow velocities and directions during a strong regional ESE (offshore) wind event. The flow across the blowout immediately separated at the upwind rim crest, and within the blowout was strongly reversed. High, negative vertical flows occurred down the downwind (but seaward) vertical scarp which projected into the separation envelope and topographically forced flow back into the blowout. A pronounced, accelerated jet flow existed near the surface across the blowout basin, and the flow exhibited a complex, anti-clockwise structure with the near-surface flow following the contours around the blowout basin and lower slopes. Significant aeolian sediment transport occurred across the whole bowl basin and sediment was delivered by saltation and suspension out the blowout to the east. This study demonstrates that strong offshore winds produce pronounced topographically forced flow steering, separation, reversal, and more complex three-dimensional motions within a bowl blowout, and that such winds within a bowl blowout play a notable role in transporting sediment within and beyond deep topographic hollows in the foredune. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available