4.8 Article

The Effects of Catalyst Layer Deposition Methodology on Electrode Performance

Journal

ADVANCED ENERGY MATERIALS
Volume 3, Issue 5, Pages 589-599

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201200759

Keywords

catalyst deposition; energy conversion and storage; microfluidic fuel cell; X-ray computed tomography; CO2 reduction

Funding

  1. Department of Energy [DE-FG02005ER46260]
  2. Department of Energy through an STTR grant [DE-SC0004453]
  3. National Science Foundation [CTS 05-47617]
  4. International Institute of Carbon Neutral Energy Research [WPI-I2CNER]
  5. World Premier International Research Center Initiative (WPI), MEXT, Japan

Ask authors/readers for more resources

The catalyst layer of the cathode is arguably the most critical component of low-temperature fuel cells and carbon dioxide (CO2) electrolysis cells because their performance is typically limited by slow oxygen (O2) and CO2 reduction kinetics. While significant efforts have focused on developing cathode catalysts with improved activity and stability, fewer efforts have focused on engineering the catalyst layer structure to maximize catalyst utilization and overall electrode and system performance. Here, we study the performance of cathodes for O2 reduction and CO2 reduction as a function of three common catalyst layer preparation methods: hand-painting, air-brushing, and screen-printing. We employed ex-situ X-ray micro-computed tomography (MicroCT) to visualize the catalyst layer structure and established data processing procedures to quantify catalyst uniformity. By coupling structural analysis with in-situ electrochemical characterization, we directly correlate variation in catalyst layer morphology to electrode performance. MicroCT and SEM analyses indicate that, as expected, more uniform catalyst distribution and less particle agglomeration, lead to better performance. Most importantly, the analyses reported here allow for the observed differences over a large geometric volume as a function of preparation methods to be quantified and explained for the first time. Depositing catalyst layers via a fully-automated air-brushing method led to a 56% improvement in fuel cell performance and a significant reduction in electrode-to-electrode variability. Furthermore, air-brushing catalyst layers for CO2 reduction led to a 3-fold increase in partial CO current density and enhanced product selectivity (94% CO) at similar cathode potential but a 10-fold decrease in catalyst loading as compared to previous reports.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available