4.8 Article

Top-illuminated Organic Photovoltaics on a Variety of Opaque Substrates with Vapor-printed Poly(3,4-ethylenedioxythiophene) Top Electrodes and MoO3 Buffer Layer

Journal

ADVANCED ENERGY MATERIALS
Volume 2, Issue 11, Pages 1404-1409

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201200112

Keywords

top-illuminated organic solar cells; opaque substrates; chemical vapor deposition; vapor-phase polymerization; poly(3; 4-ethylenedioxythiophene) (PEDOT); PEDOT:PSS

Ask authors/readers for more resources

Organic photovoltaics devices typically utilize illumination through a transparent substrate, such as glass or an optically clear plastic. Utilization of opaque substrates, including low cost foils, papers, and textiles, requires architectures that instead allow illumination through the top of the device. Here, we demonstrate top-illuminated organic photovoltaics, employing a dry vapor-printed poly(3,4-ethylenedioxythiophene) (PEDOT) polymer anode deposited by oxidative chemical vapor deposition (oCVD) on top of a small-molecule organic heterojunction based on vacuum-evaporated tetraphenyldibenzoperiflanthene (DBP) and C-60 heterojunctions. Application of a molybdenum trioxide (MoO3) buffer layer prior to oCVD deposition increases the device photocurrent nearly 10 times by preventing oxidation of the underlying photoactive DBP electron donor layer during the oCVD PEDOT deposition, and resulting in power conversion efficiencies of up to 2.8% for the top-illuminated, ITO-free devices, approximately 75% that of the conventional cell architecture with indium-tin oxide (ITO) transparent anode (3.7%). Finally, we demonstrate the broad applicability of this architecture by fabricating devices on a variety of opaque surfaces, including common paper products with over 2.0% power conversion efficiency, the highest to date on such fiber-based substrates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available