4.8 Article

Semi-Transparent Tandem Organic Solar Cells with 90% Internal Quantum Efficiency

Journal

ADVANCED ENERGY MATERIALS
Volume 2, Issue 12, Pages 1467-1476

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201200204

Keywords

polymer solar cells; semi-transparent solar cells; interface; conjugated polymers; tandem solar cells

Funding

  1. Swedish Energy Agency
  2. Swedish Research Council
  3. Advanced Functional Materials initiative at Linkoping University
  4. Knut and Alice Wallenberg Foundation (KAW)
  5. KAW
  6. VINNOVA

Ask authors/readers for more resources

Semi-transparent (ST) organic solar cells with potential application as power generating windows are studied. The main challenge is to find proper transparent electrodes with desired electrical and optical properties. In this work, this is addressed by employing an amphiphilic conjugated polymer PFPA-1 modified ITO coated glass substrate as the ohmic electron-collecting cathode and PEDOT:PSS PH1000 as the hole-collecting anode. For active layers based on different donor polymers, considerably lower reflection and parasitic absorption are found in the ST solar cells as compared to solar cells in the standard geometry with an ITO/PEDOT:PSS anode and a LiF/Al cathode. The ST solar cells have remarkably high internal quantum efficiency at short circuit condition (similar to 90%) and high transmittance (similar to 50%). Hence, efficient ST tandem solar cells with enhanced power conversion efficiency (PCE) compared to a single ST solar cell can be constructed by connecting the stacked two ST sub-cells in parallel. The total loss of photons by reflection, parasitic absorption and transmission in the ST tandem solar cell can be smaller than the loss in a standard solar cell based on the same active materials. We demonstrate this by stacking five separately prepared ST cells on top of each other, to obtain a higher photocurrent than in an optimized standard solar cell.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available