4.8 Article

Propylphenol to Phenol and Propylene over Acidic Zeolites: Role of Shape Selectivity and Presence of Steam

Journal

ACS CATALYSIS
Volume 8, Issue 9, Pages 7861-7878

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.8b01564

Keywords

catalysis; lignin valorization; ZSM-5; dealkylation; propylphenol and phenol; shape selectivity

Funding

  1. China Scholarship Council (CSC) [201404910467]
  2. Research Foundation Flanders (FWO)

Ask authors/readers for more resources

This contribution studies the steam-assisted dealkylation of 4-npropylphenol (4-n-PP), one of the major products derived from lignin, into phenol and propylene over several micro- and mesoporous acidic aluminosilicates in gas phase. A series of acidic zeolites with different topology (e.g., FER, TON, MFI, BEA, and FAU) are studied, of which ZSM-5 outperforms the others. The catalytic results, including zeolite topology and water stability effects, are rationalized in terms of thermodynamics and kinetics. A reaction mechanism is proposed by (i) analyzing products distribution under varying temperature and contact time conditions, (ii) investigating the dealkylation of different regio- and geometric isomers of propylphenol, and (iii) studying the reverse alkylation of phenol and propylene. The mechanism accords to the classic carbenium chemistry including isomerization, disproportionation, transalkylation, and dealkylation, as the most important reactions. The exceptional selectivity of ZSM-5 is attributed to a pore confinement, avoiding disproportionation/transalkylation as a result of a transition state shape selectivity. The presence of water maintains a surprisingly stable catalysis, especially for ZSM-5 with low acid density. The working hypothesis of this stabilization is that water precludes diphenyl ether(s) formation in the pores by reducing the lifetime of the phenolics at the active site due to the high heat of adsorption of water on H-ZSM-5, besides counteracting the equilibrium of the phenolics condensation reaction. The water effect is unique for the combination of (alkyl)phenols and ZSM-5.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available