4.8 Article

Computationally Assisted Mechanistic Investigation and Development of Pd-Catalyzed Asymmetric Suzuki-Miyaura and Negishi Cross-Coupling Reactions for Tetra-ortho-Substituted Biaryl Synthesis

Journal

ACS CATALYSIS
Volume 8, Issue 11, Pages 10190-10209

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.8b02509

Keywords

cross-coupling; palladium; catalysis; asymmetric; phosphines

Funding

  1. NIH [GM087605]
  2. Boehringer Ingelheim Pharmaceuticals
  3. XSEDE [TG-CHE120052]
  4. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM087605] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Metal-catalyzed cross-coupling reactions are extensively employed in both academia and industry for the synthesis of biaryl derivatives for applications to both medicine and material science. Application of these methods to prepare tetra-ortho-substituted biaryls leads to chiral atropisomeric products that introduce the opportunity to use catalyst control to develop asymmetric cross-coupling procedures to access these important compounds. Asymmetric Pd-catalyzed Suzuki-Miyaura and Negishi cross-coupling reactions to form tetra-ortho-substituted biaryls were studied employing a collection of P-chiral dihydrobenzooxaphosphole (BOP) and dihydrobenzoazaphosphole (BAP) ligands. Enantioselectivities of up to 95:5 and 85:15 enantiomeric ratios were identified for the Suzuki-Miyaura and Negishi cross-coupling reactions, respectively. Unique ligands for the Suzuki-Miyaura reaction vs the Negishi reaction were identified. A computational study on these Suzuki Miyaura and Negishi cross-coupling reactions enabled an understanding in the differences between the enantiodiscriminating events between these two cross-coupling reactions. These results support that enantioselectivity in the Negishi reaction results from the reductive elimination step, whereas all steps in the Suzuki-Miyaura catalytic cycle contribute to the overall enantioselection with transmetalation and reductive elimination providing the most contribution to the observed selectivities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available