4.8 Article

Nitrogen-Doped Hollow Carbon Spheres as a Support for Platinum-Based Electrocatalysts

Journal

ACS CATALYSIS
Volume 4, Issue 11, Pages 3856-3868

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/cs5003492

Keywords

electrocatalysis; nitrogen-doped carbon; platinum nanoparticles; stablity; fuel cells

Funding

  1. Kekule Fellowship from the Fonds der Chemischen Industrie (FCI)
  2. DFG within the DFG-AIF-Cluster MT-PEM

Ask authors/readers for more resources

Platinum and platinum alloys supported on carbon materials are the state of the art electrocatalysts for the essential oxygen reduction reaction (ORR) in low-temperature fuel cells. The limited stability of such materials under the often detrimental operation conditions of fuel cells still remains a critical issue to improve. In this work, we explore the impact of nitrogen-doped carbon supports on the activity and stability of platinum-based fuel cell catalysts. We present a nitrogen-doped mesostructured carbon material, nitrogen-doped hollow carbon spheres (NHCS), as a support for platinum-based electrocatalysts. A detailed study of the electrochemical activity and stability was carried out for two Pt@NHCS materials i.e., as-made material (Pt@NHCS) with a Pt particle size smaller than 2 nm and the corresponding material after thermal treatment at 850 degrees C (Pt@NHCS triangle T) with a Pt particle size of ca. 23 nm. Activity in the ORR was studied by rotating disc electrode (RDE) thin-film measurements, and electrocatalyst stability was evaluated by accelerated aging tests under simulated startstop conditions. The performance of the NHCS-based materials was compared to the two corresponding nitrogen-free materials as well as to a standard Pt/Vulcan catalyst. The underlying degradation mechanisms of Pt@NHCS materials were investigated via identical location electron microscopy. Our results conclusively show that nitrogen doping of the carbon supports can offer benefits for achieving high initial mass activities due to improved high platinum dispersion; however, it was not found to necessarily lead to an improvement of the catalyst stability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available