4.8 Article

Fabrication of Ag3PO4-Graphene Composites with Highly Efficient and Stable Visible Light Photocatalytic Performance

Journal

ACS CATALYSIS
Volume 3, Issue 3, Pages 363-369

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/cs3008126

Keywords

graphene; Ag3PO4; composites; hydrothermal; visible light photocatalytic

Funding

  1. National Natural Science Foundation of China [51102116]
  2. Natural Science Foundation of Jiangsu [BK2011480, BK2011534]
  3. Priority Academic Program Development of Jiangsu Higher Education Institutions
  4. China Postdoctoral Science Foundation [2012M511223]
  5. Natural Science Foundation of the Jiangsu Higher Education Institutions of China [10KJB430001, 12KJB550002]
  6. Scientific Research Foundation for Advanced Talents, Jiangsu University [10JDG057, 11JDG050]

Ask authors/readers for more resources

A facile and effective hydrothermal method for the fabrication of the Ag3PO4-graphene (Ag3PO4-GR) visible light Photocatalyst has been developed to improve the photocatalytic performance and stability of Ag3PO4, and also to reduce the high cost of Ag3PO4 for practical uses. The size and morphology of Ag3PO4 particles could be tailored by the electrostatically driven assembly of Ag+ on graphene oxide (GO) sheets and by the controlled growth of Ag3PO4 particles on the GO surface. The generation, of Ag3PO4 and the transformation of GO to GR can be achieved simultaneously in the hydrothermal process. The improved photocatalytic activity of Ag3PO4-GR composites under visible light irradiation is attributed to high-surface-area GR sheets, enhanced absorption of organic dyes, and more efficient separation of photogenerated electron-hole pairs. The transfer of photogenerated electrons from the surface of Ag3PO4 to GR sheets also reduces the possibility of decomposing Ag+ to metallic Ag, suggesting an improved stability of recyclable Ag3PO4-GR composite photocatalyst. Moreover, with the advances in the large-scale production of high-quality GO, the use of GO as the starting material can also reduce the cost for the synthesis of Ag3PO4-based photocatalysts without weakening their photocatalytic activities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available