4.8 Article

Influence of PEDOT:PSS crystallinity and composition on electrochemical transistor performance and long-term stability

Journal

NATURE COMMUNICATIONS
Volume 9, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-018-06084-6

Keywords

-

Funding

  1. National Research Foundation of Korea (NRF) - Ministry of Science and ICT [NRF-2017R1A2B4003873, NRF-2018M3A7B4070988, NRF-2018M3D1A1051602]

Ask authors/readers for more resources

Owing to the mixed electron/hole and ion transport in the aqueous environment, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-based organic electrochemical transistor has been regarded as one of the most promising device platforms for bioelectronics. Nonetheless, there exist very few in-depth studies on how intrinsic channel material properties affect their performance and long-term stability in aqueous environments. Herein, we investigated the correlation among film microstructural crystallinity/composition, device performance, and aqueous stability in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films. The highly organized anisotropic ordering in crystallized conducting polymer films led to remarkable device characteristics such as large transconductance (similar to 20 mS), extraordinary volumetric capacitance (113 F.cm(-3)), and unprecedentedly high [mu C*] value (similar to 490 F.cm(-1) V-1 s(-1)). Simultaneously, minimized poly(styrenesulfonate) residues in the crystallized film substantially afforded marginal film swelling and robust operational stability even after >20-day water immersion, >2000-time repeated on-off switching, or high-temperature/pressure sterilization. We expect that the present study will contribute to the development of long-term stable implantable bioelectronics for neural recording/stimulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available