4.8 Article

A selective and efficient electrocatalyst for carbon dioxide reduction

Journal

NATURE COMMUNICATIONS
Volume 5, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms4242

Keywords

-

Funding

  1. American Chemical Society Petroleum Research Fund [50801-DNI10]
  2. US Department of Energy [DE-FG02-13ER16381]

Ask authors/readers for more resources

Converting carbon dioxide to useful chemicals in a selective and efficient manner remains a major challenge in renewable and sustainable energy research. Silver is an interesting electrocatalyst owing to its capability of converting carbon dioxide to carbon monoxide selectively at room temperature; however, the traditional polycrystalline silver electrocatalyst requires a large overpotential. Here we report a nanoporous silver electrocatalyst that is able to electrochemically reduce carbon dioxide to carbon monoxide with approximately 92% selectivity at a rate (that is, current) over 3,000 times higher than its polycrystalline counterpart under moderate overpotentials of <0.50V. The high activity is a result of a large electrochemical surface area (approximately 150 times larger) and intrinsically high activity (approximately 20 times higher) compared with polycrystalline silver. The intrinsically higher activity may be due to the greater stabilization of CO2- intermediates on the highly curved surface, resulting in smaller overpotentials needed to overcome the thermodynamic barrier.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available