4.8 Article

Effectively suppressing dissolution of manganese from spinel lithium manganate via a nanoscale surface-doping approach

Journal

NATURE COMMUNICATIONS
Volume 5, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms6693

Keywords

-

Funding

  1. Center for Electrochemical Energy Science
  2. US Department of Energy, Office of Science, Office of Basic Energy Sciences
  3. National Research Foundation of Korea [2009-0092780] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

The capacity fade of lithium manganate-based cells is associated with the dissolution of Mn from cathode/electrolyte interface due to the disproportionation reaction of Mn( III), and the subsequent deposition of Mn(II) on the anode. Suppressing the dissolution of Mn from the cathode is critical to reducing capacity fade of LiMn2O4-based cells. Here we report a nanoscale surface-doping approach that minimizes Mn dissolution from lithium manganate. This approach exploits advantages of both bulk doping and surface-coating methods by stabilizing surface crystal structure of lithium manganate through cationic doping while maintaining bulk lithium manganate structure, and protecting bulk lithium manganate from electrolyte corrosion while maintaining ion and charge transport channels on the surface through the electrochemically active doping layer. Consequently, the surface-doped lithium manganate demonstrates enhanced electrochemical performance. This study provides encouraging evidence that surface doping could be a promising alternative to improve the cycling performance of lithium-ion batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available