4.8 Article

Semiconducting single-walled carbon nanotubes sorting with a removable solubilizer based on dynamic supramolecular coordination chemistry

Journal

NATURE COMMUNICATIONS
Volume 5, Issue -, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/ncomms6041

Keywords

-

Funding

  1. Nanotechnology Platform Project (Molecules and Materials Synthesis) of theMinistry of Education, Culture, Sports, Science and Technology (MEXT), Japan

Ask authors/readers for more resources

Highly pure semiconducting single-walled carbon nanotubes (SWNTs) are essential for the next generation of electronic devices, such as field-effect transistors and photovoltaic applications; however, contamination by metallic SWNTs reduces the efficiency of their associated devices. Here we report a simple and efficient method for the separation of semiconducting- and metallic SWNTs based on supramolecular complex chemistry. We here describe the synthesis of metal-coordination polymers (CP-Ms) composed of a fluorene-bridged bis-phenanthroline ligand and metal ions. On the basis of a difference in the 'solubility product' of CP-M-solubilized semiconducting SWNTs and metallic SWNTs, we readily separated semiconducting SWNTs. Furthermore, the CP-M polymers on the SWNTs were simply removed by adding a protic acid and inducing depolymerization to the monomer components. We also describe molecular mechanics calculations to reveal the difference of binding and wrapping mode between CP-M/semiconducting SWNTs and CP-M/metallic SWNTs. This study opens a new stage for the use of such highly pure semiconducting SWNTs in many possible applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available