4.8 Article

High-sensitivity accelerometer composed of ultra-long vertically aligned barium titanate nanowire arrays

Journal

NATURE COMMUNICATIONS
Volume 4, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms3682

Keywords

-

Funding

  1. Air Force Office of Scientific Research (AFOSR) [FA9550-12-1-0132]

Ask authors/readers for more resources

A configuration that shows great promise in sensing applications is vertically aligned piezoelectric nanowire arrays that allow facile interfacing with electrical interconnects. Nano-electromechanical systems developed using piezoelectric nanowires have gained interest primarily for their potential in energy harvesting applications, because they are able to convert several different sources of mechanical energy into useful electrical power. To date, no results have demonstrated the capability to use aligned piezoelectric nanowire arrays as a highly accurate nano-electromechanical system based dynamic sensor with a wide operating bandwidth and unity coherence. Here we report the growth of vertically aligned (similar to 45 mu m long) barium titanate nanowire arrays, realized through a two-step hydrothermal synthesis approach, and demonstrate their use as an accurate accelerometer. High sensitivity of up to 50 mV g(-1) is observed from the sensor composed of vertically aligned barium titanate nanowire arrays, thus providing performance comparable to many of the commercial accelerometer systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available