4.8 Article

Revealing the ultrafast process behind the photoreduction of graphene oxide

Journal

NATURE COMMUNICATIONS
Volume 4, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms3560

Keywords

-

Funding

  1. Max Planck Society
  2. Natural Sciences and Engineering Research Council of Canada

Ask authors/readers for more resources

Effective techniques to reduce graphene oxide are in demand owing to the multitude of potential applications of this two-dimensional material. A very promising green method to do so is by exposure to ultraviolet irradiation. Unfortunately, the dynamics behind this reduction remain unclear. Here we perform a series of transient absorption experiments in an effort to develop and understand this process on a fundamental level. An ultrafast photoinduced chain reaction is observed to be responsible for the graphene oxide reduction. The reaction is initiated using a femtosecond ultraviolet pulse that photoionizes the solvent, liberating solvated electrons, which trigger the reduction. The present study reaches the fundamental time scale of the ultraviolet photoreduction in solution, which is revealed to be in the picosecond regime.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available