4.8 Article

Ultra-low-loss optical delay line on a silicon chip

Journal

NATURE COMMUNICATIONS
Volume 3, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms1876

Keywords

-

Funding

  1. Defense Advanced Research Projects Agency

Ask authors/readers for more resources

Light propagation through an optical fibre causes a long, non-resonant (true) time delay used in numerous applications. In contrast to how it is deployed in optical communication systems, fibre is coiled in these applications to reduce footprint. This is a configuration better suited for a chip-based waveguide that would improve shock resistance, and afford the possibility of integration for system-on-a-chip functionality. However, integrated waveguide attenuation rates lag far behind the corresponding rates of optical fibre, featuring attenuation many orders larger. Here we demonstrate a monolithic waveguide as long as 27 m (39 m optical path length), and featuring broadband loss rate values of (0.08 +/- 0.01) dB m(-1) measured over 7 m by optical backscatter. Resonator measurements show a further reduction of loss to 0.037 dB m(-1), close to that of optical fibres when first considered a viable technology. Scaling this waveguide to integrated spans exceeding 250 m and attenuation rates below 0.01 dB m(-1) is discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available