4.8 Article

Genomics of DNA cytosine methylation in Escherichia coli reveals its role in stationary phase transcription

Journal

NATURE COMMUNICATIONS
Volume 3, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms1878

Keywords

-

Funding

  1. Department of Science and Technology, Government of India [SR/S2/RJN-49/2010]
  2. Spanish Ministry of Science and Innovation
  3. Biotechnology and Biological Sciences Research Council (BBSRC)
  4. Isaac Newton Trust
  5. European Molecular Biology Laboratory (EMBL)
  6. Council for Scientific and Industrial Research, India [09/860(0122)/2011-EMR-I]
  7. BBSRC [BB/E011489/1, BB/E01075X/1] Funding Source: UKRI
  8. Biotechnology and Biological Sciences Research Council [BB/E01075X/1, BB/E011489/1] Funding Source: researchfish
  9. Cancer Research UK [16358] Funding Source: researchfish

Ask authors/readers for more resources

DNA cytosine methylation regulates gene expression in mammals. In bacteria, its role in gene expression and genome architecture is less understood. Here we perform high-throughput sequencing of bisulfite-treated genomic DNA from Escherichia coli K12 to describe, for the first time, the extent of cytosine methylation of bacterial DNA at single-base resolution. Whereas most target sites (C(m)CWGG) are fully methylated in stationary phase cells, many sites with an extended CC(m)CWGG motif are only partially methylated in exponentially growing cells. We speculate that these partially methylated sites may be selected, as these are slightly correlated with the risk of spontaneous, non-synonymous conversion of methylated cytosines to thymines. Microarray analysis in a cytosine methylation-deficient mutant of E. coli shows increased expression of the stress response sigma factor RpoS and many of its targets in stationary phase. Thus, DNA cytosine methylation is a regulator of stationary phase gene expression in E. coli.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available