4.8 Article

Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure

Journal

NATURE COMMUNICATIONS
Volume 3, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms1679

Keywords

-

Funding

  1. Japan Society for the Promotion of Science (JSPS)
  2. council for Science and Technology Policy (CSTP)

Ask authors/readers for more resources

The spin-orbit interaction affects the electronic structure of solids in various ways. Topological insulators are one example in which the spin-orbit interaction leads the bulk bands to have a non-trivial topology, observable as gapless surface or edge states. Another example is the Rashba effect, which lifts the electron-spin degeneracy as a consequence of the spin-orbit interaction under broken inversion symmetry. It is of particular importance to know how these two effects, that is, the non-trivial topology of electronic states and the Rashba spin splitting, interplay with each other. Here we show through sophisticated first-principles calculations that BiTeI, a giant bulk Rashba semiconductor, turns into a topological insulator under a reasonable pressure. This material is shown to exhibit several unique features, such as a highly pressure-tunable giant Rashba spin splitting, an unusual pressure-induced quantum phase transition, and more importantly, the formation of strikingly different Dirac surface states at opposite sides of the material.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available