4.8 Article

High-efficiency Cooper pair splitting demonstrated by two-particle conductance resonance and positive noise cross-correlation

Journal

NATURE COMMUNICATIONS
Volume 3, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms2169

Keywords

-

Funding

  1. European Research Council under the European Community [227716]
  2. Israeli Science Foundation (ISF) [530-08]
  3. Minerva foundation
  4. German Israeli Foundation (GIF)
  5. German Israeli Project Cooperation (DIP)
  6. US-Israel Bi-National Science Foundation (BSF)
  7. Israeli Ministry of Science [3-66799]

Ask authors/readers for more resources

Entanglement is at the heart of the Einstein-Podolsky-Rosen paradox, where the non-locality is a necessary ingredient. Cooper pairs in superconductors can be split adiabatically, thus forming entangled electrons. Here, we fabricate such an electron splitter by contacting an aluminium superconductor strip at the centre of a suspended InAs nanowire. The nanowire is terminated at both ends with two normal metallic drains. Dividing each half of the nanowire by a gate-induced Coulomb blockaded quantum dot strongly impeds the flow of Cooper pairs due to the large charging energy, while still permitting passage of single electrons. We provide conclusive evidence of extremely high efficiency Cooper pair splitting via observing positive two-particle correlations of the conductance and the shot noise of the split electrons in the two opposite drains of the nanowire. Moreover, the actual charge of the injected quasiparticles is verified by shot noise measurements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available