4.8 Article

Ambient-stable tetragonal phase in silver nanostructures

Journal

NATURE COMMUNICATIONS
Volume 3, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms1963

Keywords

-

Funding

  1. Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility [DE-AC02-06CH11357]
  2. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]

Ask authors/readers for more resources

Crystallization of noble metal atoms usually leads to the highly symmetric face-centred cubic phase that represents the thermodynamically stable structure. Introducing defective microstructures into a metal crystal lattice may induce distortions to form non-face-centered cubic phases when the lateral dimensions of objects decrease down to nanometre scale. However, stable non-face-centered cubic phases have not been reported in noble metal nanoparticles. Here we report that a stable body-centred tetragonal phase is observed in silver nanoparticles with fivefold twinning even at ambient conditions. The body-centered tetragonal phase originates from the distortion of cubic silver lattices due to internal strains in the twinned nanoparticles. The lattice distortion in the centre of such a nanoparticle is larger than that in the surfaces, indicating that the nanoparticle is composed of a highly strained core encapsulated in a less-strained sheath that helps stabilize the strained core.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available