4.8 Article

Discovery of acetylene hydratase activity of the iron-sulphur protein IspH

Journal

NATURE COMMUNICATIONS
Volume 3, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms2052

Keywords

-

Funding

  1. TUM Graduate School, Hans-Fischer Gesellschaft, DFG [GR1861/5-1]
  2. NIH [GM65307, AI074233]
  3. American Heart Association Predoctoral Fellowship [10PRE4430022]

Ask authors/readers for more resources

The final step of the methylerythritol phosphate isoprenoid biosynthesis pathway is catalysed by the iron-sulphur enzyme IspH, producing the universal precursors of terpenes: isopentenyl diphosphate and dimethylallyl diphosphate. Here we report an unforeseen reaction discovered during the investigation of the interaction of IspH with acetylene inhibitors by X-ray crystallography, Mossbauer, and nuclear magnetic resonance spectroscopy. In addition to its role as a 2H(+)/2e(-) reductase, IspH can hydrate acetylenes to aldehydes and ketones via anti-Markovnikov/Markovnikov addition. The reactions only occur with the oxidised protein and proceed via eta(1)-O-enolate intermediates. One of these is characterized crystallographically and contains a C4 ligand oxygen bound to the unique, fourth iron in the 4Fe-4S cluster: this intermediate subsequently hydrolyzes to produce an aldehyde product. This unexpected side to IspH reactivity is of interest in the context of the mechanism of action of other acetylene hydratases, as well as in the design of antiinfectives targeting IspH.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available