4.3 Article

Hydrogen peroxide pretreatment induces osmotic stress tolerance by influencing osmolyte and abscisic acid levels in maize leaves

Journal

JOURNAL OF PLANT INTERACTIONS
Volume 9, Issue 1, Pages 559-565

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/17429145.2013.871077

Keywords

abscisic acid; H2O2 pretreatment; osmotic stress; polyamine; proline; soluble sugar

Funding

  1. Turkish National Science Foundation [111T511]

Ask authors/readers for more resources

Hydrogen peroxide (H2O2) functions as a signal molecule in plants under abiotic and biotic stresses. Leaves of detached maize (Zea mays L.) seedlings were used to study the function of H2O2 pretreatment in osmotic stress resistance. Low H2O2 concentration (10 mM) which did not cause a visual symptom of water deficit (leaf rolling) was applied to the seedlings. Exogenous H2O2 alone increased leaf water potential, endogenous H2O2 content, abscisic acid (ABA) concentration, and metabolite levels including soluble sugars, proline, and polyamines while it decreased lipid peroxidation and stomatal conductance. Osmotic stress induced by polyethylene glycol (PEG 6000) decreased leaf water potential and stomatal conductance but enhanced lipid peroxidation, endogenous H2O2 content, the metabolite levels, and ABA content. H2O2 pretreatment also induced the metabolite accumulation and improved water status, stomatal conductance, lipid peroxidation, ABA, and H2O2 levels under osmotic stress. These results indicated that H2O2 pretreatment may alleviate water loss and induce osmotic stress resistance by increasing the levels of soluble sugars, proline, and polyamines thus ABA and H2O2 production slightly decrease in maize seedlings under osmotic stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available