4.1 Article

On the Solution of Double-Diffusive Convective Flow due to a Cone by a Linearization Method

Journal

JOURNAL OF APPLIED MATHEMATICS
Volume -, Issue -, Pages -

Publisher

HINDAWI LTD
DOI: 10.1155/2012/587357

Keywords

-

Funding

  1. University of KwaZulu-Natal
  2. National Research Foundation (NRF)

Ask authors/readers for more resources

The paper details the use of a nonperturbation successive linearization method to solve the coupled nonlinear boundary value problem due to double-diffusive convection from an inverted cone. Diffusion-thermo and thermal-diffusion effects have been taken into account. The governing partial differential equations are transformed into ordinary differential equations using a suitable similarity transformation. The SLM is based on successively linearizing the governing nonlinear boundary layer equations and solving the resulting higher-order deformation equations using spectral methods. The results are compared with the limited cases from previous studies and results obtained using the Matlab inbuilt bvp4c numerical algorithm and a shooting technique that uses Runge-Kutta-Fehlberg (RKF45) and Newton-Raphson schemes. These comparisons reveal the robustness and validate the usage of the linearisation method technique. The results show that the nonperturbation technique in combination with the Chebyshev spectral collocation method is an efficient numerical algorithm with assured convergence that serves as an alternative to numerical methods for solving nonlinear boundary value problems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available