4.3 Article

Boolean modeling: a logic-based dynamic approach for understanding signaling and regulatory networks and for making useful predictions

Publisher

WILEY
DOI: 10.1002/wsbm.1273

Keywords

-

Funding

  1. Direct For Biological Sciences
  2. Div Of Molecular and Cellular Bioscience [1121612] Funding Source: National Science Foundation
  3. Direct For Mathematical & Physical Scien
  4. Division Of Physics [1205840] Funding Source: National Science Foundation

Ask authors/readers for more resources

The biomolecules inside or near cells form a complex interacting system. Cellular phenotypes and behaviors arise from the totality of interactions among the components of this system. A fruitful way of modeling interacting biomolecular systems is by network-based dynamic models that characterize each component by a state variable, and describe the change in the state variables due to the interactions in the system. Dynamic models can capture the stable state patterns of this interacting system and can connect them to different cell fates or behaviors. A Boolean or logic model characterizes each biomolecule by a binary state variable that relates the abundance of that molecule to a threshold abundance necessary for downstream processes. The regulation of this state variable is described in a parameter free manner, making Boolean modeling a practical choice for systems whose kinetic parameters have not been determined. Boolean models integrate the body of knowledge regarding the components and interactions of biomolecular systems, and capture the system's dynamic repertoire, for example the existence of multiple cell fates. These models were used for a variety of systems and led to important insights and predictions. Boolean models serve as an efficient exploratory model, a guide for follow-up experiments, and as a foundation for more quantitative models. (C) 2014 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available