4.3 Review

Post-translational modification: nature's escape from genetic imprisonment and the basis for dynamic information encoding

Publisher

WILEY
DOI: 10.1002/wsbm.1185

Keywords

-

Funding

  1. US NIH [R01-GM081578]
  2. French CNRS

Ask authors/readers for more resources

We discuss protein post-translational modification (PTM) from an information processing perspective. PTM at multiple sites on a protein creates a combinatorial explosion in the number of potential mod-forms, or global patterns of modification. Distinct mod-forms can elicit distinct downstream responses, so that the overall response depends partly on the effectiveness of a particular mod-form to elicit a response and partly on the stoichiometry of that mod-form in the molecular population. We introduce the mod-form distributionthe relative stoichiometries of each mod-formas the most informative measure of a protein's state. Distinct mod-form distributions may summarize information about distinct cellular and physiological conditions and allow downstream processes to interpret this information accordingly. Such information encoding by PTMs may facilitate evolution by weakening the need to directly link upstream conditions to downstream responses. Mod-form distributions provide a quantitative framework in which to interpret ideas of PTM codes that are emerging in several areas of biology, as we show by reviewing examples of ion channels, GPCRs, microtubules, and transcriptional co-regulators. We focus particularly on examples other than the well-known histone code, to emphasize the pervasive use of information encoding in molecular biology. Finally, we touch briefly on new methods for measuring mod-form distributions. WIREs Syst Biol Med 2012, 4:565583. doi: 10.1002/wsbm.1185 For further resources related to this article, please visit the WIREs website.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available