4.7 Article

Caspase-7 ablation modulates UPR, reprograms TRAF2-JNK apoptosis and protects T17M rhodopsin mice from severe retinal degeneration

Journal

CELL DEATH & DISEASE
Volume 4, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/cddis.2013.34

Keywords

retinal degeneration; hT17M RHO; UPR; caspase-7; apoptosis

Categories

Funding

  1. NIH [R01EY020905]
  2. Foundation Fighting Blindness [TA-GT-0409-0508-NTERI]
  3. Hope for Vision
  4. DOD [W81XH-10-2-0003]

Ask authors/readers for more resources

The UPR is activated in the mouse retina expressing misfolded T17M rhodopsin (RHO) during autosomal dominant retinitis pigmentosa (ADRP) progression. Therefore, the goal of this study is to validate the UPR-induced caspase-7 as a new therapeutic target that modulates the UPR, reduces the level of apoptosis and protects the ADRP retina from retinal degeneration and light-induced damage. Mice were analyzed using ERG, SD-OCT and histology to determine the role of caspase-7 ablation. The results of these experiments demonstrate the significant preservation of photoreceptors and their function in T17M RHO CASP-7 retinas from P30 to P90 compared with control mice. These mice were also protected from the light-induced decline in the ERG responses and apoptosis. The RNA and protein analyses of T17M RHO + Csp7-siRNA, Tn + Csp7-siRNA 661W cells and T17M RHO CASP-7 retinas revealed that caspase-7 ablation reprograms the UPR and reduces JNK-induced apoptosis. This reduction is believed to occur through the downregulation of the mTOR and Hif1a proteins. In addition, decline in activated PARP1 was detected in T17M RHO CASP-7 retina. Altogether, our findings indicate that the targeting of caspase-7 in T17M RHO mice could be a feasible therapeutic strategy for advanced stages of ADRP. Cell Death and Disease (2013) 4, e528; doi:10.1038/cddis.2013.34; published online 7 March 2013

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available