4.1 Article

Merotelic attachments and non-homologous end joining are the basis of chromosomal instability

Journal

CELL DIVISION
Volume 5, Issue -, Pages -

Publisher

BIOMED CENTRAL LTD
DOI: 10.1186/1747-1028-5-13

Keywords

-

Categories

Funding

  1. Fondo de Investigacion en Salud [PS09/00572]
  2. Comunidad Autonoma de Madrid [S-BIO-0189-2006]
  3. Spanish National Research Council (CSIC)
  4. Pfizer

Ask authors/readers for more resources

Although the large majority of solid tumors show a combination of mitotic spindle defects and chromosomal instability, little is known about the mechanisms that govern the initial steps in tumorigenesis. The recent report of spindle-induced DNA damage provides evidence for a single mechanism responsible for the most prominent genetic defects in chromosomal instability. Spindle-induced DNA damage is brought about by uncorrected merotelic attachments, which cause kinetochore distortion, chromosome breakage at the centromere, and possible activation of DNA damage repair pathways. Although merotelic attachments are common early in mitosis, some escape detection by the kinetochore pathway. As a consequence, a proportion of merotelic attachments gives rise to chromosome breakage in normal cells and in carcinomas. An intrinsic chromosome segregation defect might thus form the basis of tumor initiation. We propose a hypothesis in which merotelic attachments and chromosome breakage establish a feedback loop that results in relaxation of the spindle checkpoint and suppression of anti-proliferative pathways, thereby promoting carcinogenesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available