4.1 Review

In-Medium Effects in the Holographic Quark-Gluon Plasma

Journal

ADVANCES IN HIGH ENERGY PHYSICS
Volume 2010, Issue -, Pages -

Publisher

HINDAWI LTD
DOI: 10.1155/2010/564624

Keywords

-

Funding

  1. Cluster of Excellence for Fundamental Physics-Origin and Structure of the Universe

Ask authors/readers for more resources

We use the gauge/gravity duality to investigate various properties of strongly coupled gauge theories, which we interpret as models for the quark-gluon plasma (QGP). In particular, we use variants of the D3/D7 setup as an implementation of the top-down approach of connecting string theory with phenomenologically relevant gauge theories. We focus on the effects of finite temperature and finite density on fundamental matter in the holographic quark-gluon plasma, which we model as the N = 2 hypermultiplet in addition to the N = 4 gauge multiplet of supersymmetric Yang-Mills theory. We use a setup in which we can describe the holographic plasma at finite temperature and either baryon or isospin density and investigate the properties of the system from three different viewpoints. (i) We study meson spectra. Our observations at finite temperature and particle density are in qualitative agreement with phenomenological models and experimental observations. They agree with previous publications in the according limits. (ii) We study the temperature and density dependence of transport properties of fundamental matter in the QGP. In particular, we obtain diffusion coefficients. Furthermore, in a kineticmodel we estimate the effects of the coupling strength on meson diffusion and therewith equilibration processes in the QGP. (iii) We observe the effects of finite temperature and density on the phase structure of fundamental matter in the holographic QGP. We trace out the phase transition lines of different phases in the phase diagram.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available