4.7 Article

Emerging Fungal Pathogen Candida auris Evades Neutrophil Attack

Journal

MBIO
Volume 9, Issue 4, Pages -

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/mBio.01403-18

Keywords

Candida aurls; fungi; immune; neutrophil; neutrophil extracellular trap; zebrafish

Categories

Funding

  1. National Institutes of Health [K08 AI108727, K08 AI132720]
  2. Burroughs Wellcome Fund [1012299]
  3. Doris Duke Charitable Foundation [112580130]
  4. NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES [K08AI108727, K08AI132720] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Candida auris has recently emerged as the first fungal pathogen to cause a global public health threat. The reason this species is causing hospitalassociated outbreaks of invasive candidiasis with high mortality is unknown. In this study, we examine the interaction of C. curls with neutrophils, leukocytes critical for control of invasive fungal infections. We show that human neutrophils do not effectively kill C. curls. Compared to Candida albicans, neutrophils poorly recruited to C. curls and failed to form neutrophil extracellular traps (NETs), which are structures of DNA, histones, and proteins with antimicrobial activity. In mixed cultures, neutrophils preferentially engaged and killed C. albicans over C. curls. Imaging of neutrophils in a zebrafish larval model of invasive candidiasis revealed the recruitment of approximately 50% fewer neutrophils in response to C. auris compared to C. albicans. Upon encounter with C. albicans in the zebrafish hindbrain, neutrophils produced clouds of histones, suggesting the formation of NETs. These structures were not observed in C. auris infection. Evasion of neutrophil attack and innate immunity offers an explanation for the virulence of this pathogen. IMPORTANCE The emerging fungal pathogen Candida auris has produced numerous outbreaks of invasive disease in hospitals worldwide. Why this species causes deadly disease is unknown. Our findings reveal a failure of neutrophils to kill C. curls compared to the most commonly encountered Candida species, C. albicans. While neutrophils produce neutrophil extracellular traps (NETs) upon encounter with C. albicans, these antimicrobial structures are not formed in response to C. auris. Using human neutrophils and a zebrafish model of invasive candidiasis, we show that C. curls poorly recruits neutrophils and evades immune attack. Identification of this impaired innate immune response to C. auris sheds light on the dismal outcomes for patients with invasive disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available