4.7 Article

Glucose availability determines silver nanoparticles toxicity in HepG2

Journal

JOURNAL OF NANOBIOTECHNOLOGY
Volume 13, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/s12951-015-0132-2

Keywords

Nanosilver; Oxidative stress; Antioxidant enzymes activity; Warburg effect

Funding

  1. Polish POIG Grant [01.01.02-10-005/08]
  2. EU through the European Regional Development Fund
  3. UITM
  4. INCT

Ask authors/readers for more resources

Background: The increasing body of evidence suggest that nanomaterials toxicity is associated with generation of oxidative stress. In this paper we investigated the role of respiration in silver nanoparticles (AgNPs) generated oxidative stress and toxicity. Since cancer cells rely on glucose as the main source of energy supply, glucose availability might be an important determinant of NPs toxicity. Methods: AgNPs of 20 nm nominal diameter were used as a model NPs. HepG2 cells were cultured in the media with high (25 mM) or low (5.5 mM) glucose content and treated with 20 nm AgNPs. AgNPs-induced toxicity was tested by neutral red assay. Generation of H2O2 in mitochondria was evaluated by use of mitochondria specific protein indicator HyPer-Mito. Expression of a 77 oxidative stress related genes was assessed by qPCR. The activity of antioxidant enzymes was estimated colorimetrically by dedicated methods in cell homogenates. Results: AgNPs-induced dose-dependent generation of H2O2 and toxicity was observed. Toxicity of AgNPs towards cells maintained in the low glucose medium was significantly lower than the toxicity towards cells growing in the high glucose concentration. Scarceness of glucose supply resulted in upregulation of the endogenous antioxidant defence mechanisms that in turn alleviated AgNPs dependent ROS generation and toxicity. Conclusion: Glucose availability can modify toxicity of AgNPs via elevation of antioxidant defence triggered by oxidative stress resulted from enhanced oxidative phosphorylation in mitochondria and associated generation of ROS. Presented results strengthen the idea of strong linkage between NPs toxicity and intracellular respiration and possibly other mitochondria dependent processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available