4.6 Review

Soils and climate change

Journal

CURRENT OPINION IN ENVIRONMENTAL SUSTAINABILITY
Volume 4, Issue 5, Pages 539-544

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.cosust.2012.06.005

Keywords

-

Funding

  1. Royal Society-Wolfson Research Merit Award
  2. [EU-FP7-KBBE-2011-5]
  3. [289694]

Ask authors/readers for more resources

Soils contain vast reserves (similar to 1500 Pg C) of carbon, about twice that found as carbon dioxide in the atmosphere. Historically, soils in managed ecosystems have lost a portion of this carbon (40-90 Pg C) through land use change, some of which has remained in the atmosphere. In terms of climate change, most projections suggest that soils carbon changes driven by future climate change will range from small losses to moderate gains, but these global trends show considerable regional variation. The response of soil C in future will be determined by a delicate balance between the impacts of increased temperature and decreased soil moisture on decomposition rates, and the balance between changes in C losses from decomposition and C gains through increased productivity. In terms of using soils to mitigate climate change, soil C sequestration globally has a large, cost-competitive mitigation potential. Nevertheless, limitations of soil C sequestration include time-limitation, non-permanence, displacement and difficulties in verification. Despite these limitations, soil C sequestration can be useful to meet short-term to medium-term targets, and confers a number of co-benefits on soils, making it a viable option for reducing the short term atmospheric CO2 concentration, thus buying time to develop longer term emission reduction solutions across all sectors of the economy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available