4.4 Article

Diel cycle of methanogen mcrA transcripts in rice rhizosphere

Journal

ENVIRONMENTAL MICROBIOLOGY REPORTS
Volume 4, Issue 6, Pages 655-663

Publisher

WILEY
DOI: 10.1111/j.1758-2229.2012.00392.x

Keywords

-

Funding

  1. Natural Science Foundation of China [40830534]
  2. National Basic Research Program of China [2011CB100505]

Ask authors/readers for more resources

Methanogens are known to inhabit not only the anaerobic bulk soil but also the rhizosphere of rice plants. The release of root exudates, a major carbon source for CH4 production in the rhizosphere, is closely coupled to plant photosynthesis. In the present study we hypothesized that the diel cycle of plant photosynthetic activity may shape the structure and function of methanogens in the rhizosphere of rice. We performed a field experiment to determine the diel dynamics of methanogen mcrA and their transcripts in the rhizosphere and bulk soil. The chemistry of NH4+, NO3-, SO42- and Fe(II) in the rice rhizosphere remained constant over a diel sampling. The mcrA copy number and their transcripts were greater in the rice rhizosphere compared with the bulk soil, indicating the enhanced activity of methanogens in the rhizosphere. The hydrogenotrophic Methanomicrobiales in particular increased in the rhizosphere whereas Methanosarcinaceae were more abundant in the bulk soil. Both the phylogenetic affiliation and copy numbers of methanogen mcrA in the rice rhizosphere did not display diel dynamics. The mcrA transcripts, however, significantly increased in the night compared with the daytime. The diel pattern of physical factors like temperature appeared not to affect the methanogen dynamics. The response of mcrA transcripts is probably due to the plant attributes, which release less O-2 from roots in the night and hence stimulate the methanogen gene transcription and activity compared with the daytime.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available