4.8 Article

IrOx core-shell nanocatalysts for cost- and energy-efficient electrochemical water splitting

Journal

CHEMICAL SCIENCE
Volume 5, Issue 8, Pages 2955-2963

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4sc01065e

Keywords

-

Funding

  1. German Research Foundation (DFG) under the Priority Program 1613 Regeneratively formed fuels by light driven water splitting [STR 596/3-1]
  2. Ministry of Education and Training of The Socialist Republic of Vietnam (MOET)
  3. German Academic Exchange Service (DAAD)
  4. Federal Ministry of Education and Research [03SF0433A]

Ask authors/readers for more resources

A family of dealloyed metal-oxide hybrid (M1M2@M1Ox) core@shell nanoparticle catalysts is demonstrated to provide substantial advances toward more efficient and less expensive electrolytic water splitting. IrNi@IrOx nanoparticles were synthesized from IrNi chi precursor alloys through selective surface Ni dealloying and controlled surface oxidation of Ir. Detailed depth-resolved insight into chemical structure, composition, morphology, and oxidation state was obtained using spectroscopic, diffraction, and scanning microscopic techniques (XANES, XRD, STEM-EDX, XPS), which confirmed our structural hypotheses at the outset. A 3-fold catalytic activity enhancement for the electrochemical oxygen evolution reaction (OER) over IrO2 and RuO2 benchmark catalysts was observed for the core-shell catalysts on a noble metal mass basis. Also, the active site-based intrinsic turnover frequency (TOF) was greatly enhanced for the most active IrNi@IrOx catalyst. This study documents the successful use of synthetic dealloying for the preparation of metal-oxide hybrid core-shell catalysts. The concept is quite general, can be applied to other noble metal nanoparticles, and points out a path forward to nanostructured proton-exchange-electrolyzer electrodes with dramatically reduced noble metal content.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available