4.8 Article

Fluorescent pH sensor constructed from a heteroatom-containing luminogen with tunable AIE and ICT characteristics

Journal

CHEMICAL SCIENCE
Volume 4, Issue 9, Pages 3725-3730

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3sc50648g

Keywords

-

Funding

  1. National Basic Research Program of China (973 Program) [2013CB834701]
  2. Research Grants Council of Hong Kong [HKUST2/CRF/10, N_HKUST620/11]
  3. University Grants Committee of Hong Kong [AoE/P-03/08]
  4. Guangdong Innovative Research Team Program [201101C0105067115]

Ask authors/readers for more resources

A heteroatom-containing organic fluorophore 1-(4-pyridinyl)-1-phenyl-2-(9-carbazolyl)ethene (CP3E) was designed and synthesized. CP3E exhibits the effect of intramolecular charge transfer (ICT) caused by the donor-acceptor interaction between its carbazole and pyridine units. Whereas it emits faintly in solution, it becomes a strong emitter in the aggregated state, demonstrating the phenomenon of aggregation-induced emission (AIE). Its emission can be reversibly switched between blue and dark states by repeated protonation and deprotonation. Such behaviour enables it to work as a fluorescent pH sensor in both solution and the solid state and as a chemosensor for detecting acidic and basic organic vapors. Analyses by NMR spectroscopy, single-crystal X-ray diffraction and computational calculations suggest that the change in electron affinity of the pyridinyl unit and molecular conformation of CP3E upon protonation and deprotonation is responsible for such sensing processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available