4.8 Article

Using surfaces to modulate the morphology and structure of attached cells - a case of cancer cells on chitosan membranes

Journal

CHEMICAL SCIENCE
Volume 4, Issue 8, Pages 3058-3067

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3sc50533b

Keywords

-

Funding

  1. National Science Council of Taiwan [NSC 101-2623-E-007-005-ET, NSC 101-2628-E-007-011-MY3]
  2. Grant for Interactive Nano/MicroElectroMechanical Components and Systems from National Tsing Hua University, Taiwan

Ask authors/readers for more resources

This paper describes the development of physically and/or chemically modified chitosan membranes to probe cellular behaviors and molecular-level structural responses of NIH-3T3 fibroblasts (normal cells) and Ha-ras-transformed cells (abnormal cells) adhered onto these modified membranes. To prepare chitosan membranes with nanometrically scaled physical features, we have demonstrated an inexpensive and easy-to-handle method that could be easily integrated with IC-based manufacturing processes with mass production potential. These physically or chemically modified chitosan membranes were examined via scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and water contact angle measurement, in order to gain a better understanding of chitosan membrane surface characteristics including surface morphology, stiffness, functional groups, and surface hydrophobicity/hydrophilicity. NIH-3T3 fibroblasts and their Ha-ras-transformed progeny were cultured on these modified chitosan membranes. After 12, 24 and 48 h of culture, these cells were investigated to decipher cellular behaviors. We found that NIH-3T3 fibroblasts and their Ha-ras-transformed progeny exhibited distinct structurally based responses attributable to chitosan membrane surface chemical or physical properties that we demonstrate as possibly applicable, for drug screening applications. Secondarily, but crucially to this study, we developed a chitosan-based micropatterning procedure that allowed us to re-arrange mammalian cells (i.e., HeLa cells in this study, for cancer drug screening) at the desired locations (with a single-cell array format). This procedure was based on cell affinity to different surface topographies of chitosan membranes that we prepared. This cell-based patterning approach has the potential for use in a wide range of applications including use as a promising platform for drug discovery, cytotoxicity studies, functional genomics, and investigations of cellular microenvironment. We believe that this study would provide further understanding of naturally derived biomaterials, lay the foundation for broadening the applications of chitosan, and facilitate the development of new biomedical devices (i.e., artificial stents, implantable artificial tissues, and sustainable implantable biosensors) with unique cell-material interface properties and characteristics, such as in vitro cell culture and diagnostic platforms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available