4.8 Article

Identification and characterisation of the gene cluster for the anti-MRSA antibiotic bottromycin: expanding the biosynthetic diversity of ribosomal peptides

Journal

CHEMICAL SCIENCE
Volume 3, Issue 12, Pages 3516-3521

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2sc21190d

Keywords

-

Funding

  1. BBSRC
  2. St. John's College, Cambridge

Ask authors/readers for more resources

Streptomycete bacteria are a rich source of antibacterial natural products. Increasing antibiotic resistance is a global concern and novel classes of potent antibiotics are rare. Here we report the identification and genetic manipulation of the gene cluster for the cyclic antimicrobial peptide bottromycin in Streptomyces scabies. Bottromycin is active towards multi-drug resistant bacteria, such as MRSA and VRE, and contains a biologically unique macrocyclic amidine. The btm biosynthetic gene cluster was identified by genome mining and confirmed by genetic experiments. The metabolites of mutant strains were identified using liquid chromatography-mass spectrometry (LCMS), to characterise two radical SAM methyltransferases that are responsible for the beta-methylation of three amino acids in bottromycin. A number of genes were also identified that are essential for bottromycin biosynthesis. A biosynthetic pathway has been proposed based on the results of these experiments coupled with bioinformatic analysis of the enzymes encoded in the btm cluster.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available