4.8 Article

Interaction anisotropy and shear instability of aspirin polymorphs established by nanoindentation

Journal

CHEMICAL SCIENCE
Volume 2, Issue 11, Pages 2236-2242

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1sc00430a

Keywords

-

Funding

  1. Department of Science and Technology
  2. University Grants Commission
  3. Danish Council for Independent Research \ Natural Sciences

Ask authors/readers for more resources

Nanoindentation is applied to the two polymorphs of aspirin to examine and differentiate their interaction anisotropy and shear instability. Aspirin provides an excellent test system for the technique because: (i) polymorphs I and II exhibit structural similarity in two dimensions, thereby facilitating clear examination of the differences in mechanical response in relation to well-defined differences between the two crystal structures; (ii) single crystals of the metastable polymorph II have only recently become accessible; (iii) shear instability has been proposed for II. Different elastic moduli and hardness values determined for the two polymorphs are correlated with their crystal structures, and the interpretation is supported by measured thermal expansion coefficients. The stress-induced transformation of the metastable polymorph II to the stable polymorph I can be brought about rapidly by mechanical milling, and proceeds via a slip mechanism. This work establishes that nanoindentation provides signature responses for the two aspirin polymorphs, despite their very similar crystal structures. It also demonstrates the value of the technique to quantify stability relationships and phase transformations in molecular crystals, enabling a deeper understanding of polymorphism in the context of crystal engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available